
- A scalable automobile rental web service

Michael Zhang
Sammy Guo

Sujaya Maiyya
Kyle Carson

Justin Pearson

CS 291A: Scalable Internet Services
Prof Bryce Boe

Fall 2017
University of California, Santa Barbara

Outline

● App demo & details

● Tsung test setup

● Optimizations

○ Horiz. & vertical scaling

○ Pagination & Caching

○ Concurrent Nginx connections

Motivation

- Sharing economy is efficient, environment-friendly and accessible to all.

- A Uber or Lyft ride is not sufficient for all travelling demand, in case of
family trip, long journey or private event.

- We are proposing a Uber-Lyft-like long-term car-sharing app.

- Cheaper option for less-populated area

Functionality

- Car owners add their cars with make, model,
color, year and tags.
- Car owners set parameters to renting their car,

● start and end times
● start and end locations
● any additional terms they see fit

- Car renters browse rentals with details, such as
owner info, car info, time duration and
geo-location on Google maps.
- Car renters rent cars and monitor their progress.

Implementation

- Framework : Ruby on Rails

- Database : sqlite3 in dev and postgreSQL in production

- Gems : bcrypt, will_paginate, geocoder, byebug

- Server : AWS Elastic Beanstalk

- Continuous Integration : Travis

- Load testing : Tsung

App demo
https://safe-peak-44452.herokuapp.com/

http://luber.fun -- coming soon

https://safe-peak-44452.herokuapp.com/
https://safe-peak-44452.herokuapp.com/
http://luber.fun

Data model

User

User

owns

rents

actions written to

Tags

sporty car seat

sun roof

Log

Rental

Car

Outline

● App demo & details

● Tsung test setup

● Optimizations

○ Horiz. & vertical scaling

○ Pagination & Caching

○ Conncurrent Nginx connections

Tsung tests: Workflow of a “Typical User”

Tsung tests: Phases
Exponentially increase “new users spawned per sec” Sessions don’t overlap

Tsung tests: Sessions
Idempotent & each user acts in isolation => avoids concurrency problems

Tsung tests: Transaction
Users selected from CSV file

Posting redirects; capture the redirect
URL from the HTTP header

Follow the redirect, then get the id
of the first editable car in the resulting HTML

Tsung tests: simultaneous users

1 u/s
2 u/s

4 u/s

8 u/s

16 u/s

simult.
users

60 sec

Test time (sec)

Tsung waits for all sessions
to end before next phase

60 sec 60 sec 60 sec

Theory: 60-sec phase + trailing session takes 6-8 sec
 => humps should be max 70 sec wide
This graph: 100 sec wide?
 => long server resp times / errors (4xx’s & 5xx’s)
 => this particular hw configuration cannot support 4usr/sec

Tsung tests: transaction time

Good BadEach tx has 1-sec think-time
=> 10-200ms “actual” waiting

2-8 sec for page load

tim
e

ta
ke

n
fo

r t
ra

ns
ac

tio
n

(m
s)

Test time (sec) Test time (sec)

Outline

● App demo & details

● Tsung test setup

● Optimizations

○ Horiz. & vertical scaling

○ Pagination & Caching

○ Concurrent Nginx connections

Horiz. & Vertical Scaling

Cost analysis

(max user rate s.t. no 4xx or 5xx http codes in tsung.log)

Pagination

For 2 users/sec

Reduced 4xx/5xx server responses & page response times.

Caching
● Russian-doll caching on views
● Only slight improvement; perhaps views not the bottleneck.
● Should’ve cached db queries also

Concurrent connections

- AWS Elastic Beanstalk instances use Nginx web servers

- Web servers can be one of the biggest bottlenecks for scaling an app

Concurrent connections

Concurrent connections: Solutions

- Configure customized environment from project source by using
.ebextensions

- Created a various configuration files in the .ebextensions directory and
ran redeployed eb instances

- Manually logged into the instances, changed /etc/nginx/nginx.conf file

No method worked!

- Did some Network Tier optimization (connection draining, stickiness, health
check..)

Is it a good idea to
use third party
services for your
application?

Questions?

