A program to play Set


Mathematica plays the Set card game over a webcam.


Appfolio Tech Talk Justin Pearson
Thursday, Jan 11, 2018 11-12pm Engineering Square and G2W


## Outline

Set

- Mathematica
- Parsing the image
- Count
- Color
- Shape
- Live demo omg

For each of 3 categories: all same OR all different


## Outline

- Parsing the image
- Count
- Color
- Shape
- Live demo omg

$$
\ln [3]:=\int_{-\infty}^{\infty} \frac{\operatorname{Sin}[x]}{x} d d x
$$

$$
\operatorname{Out}[3]=\pi
$$

$$
\begin{aligned}
& \ln [1] \text { := Solve }\left[\mathbf{a} \mathbf{x}^{\mathbf{2}}+\mathbf{b} \mathbf{x}+\mathbf{c}=\mathbf{0}, \mathrm{x}\right] \\
& \text { Out[1] }=\left\{\left\{x \rightarrow \frac{-b-\sqrt{b^{2}-4 a c}}{2 a}\right\},\left\{x \rightarrow \frac{-b+\sqrt{b^{2}-4 a c}}{2 a}\right\}\right\} \\
& \ln [2]:=\text { DSolve [ \{ } \\
& \begin{array}{l}
x^{\prime} '[t]+3 x^{\prime}[t]+2 x[t]=0, \\
\left.\left.x[0]=1, x^{\prime}[0]=0\right\}, x[t], t\right]
\end{array} \\
& \mathrm{Out}[2]=\left\{\left\{\mathbf{x}[\mathrm{t}] \rightarrow \mathbf{e}^{-2 \mathrm{t}}\left(-1+2 \mathbf{e}^{\mathrm{t}}\right)\right\}\right\}
\end{aligned}
$$

## Outline

- Set
. Mathematica
Parsing the image
- Count
- Color
- Shape
- Live demo omg


Manipulate[
Binarize[frame, t],
$\{\{t, .5\}, 0,1$, Appearance $\rightarrow$ "Open" $\}$
]

## $\ln [25]:=$ Manipulate[

ImageAdjust[frame, \{contrast, bright, gamma\}], \{\{contrast, .2\}, -2, 2, Appearance $\rightarrow$ "Open"\},
$\{\{$ bright, .6\}, $-2,2$, Appearance $\rightarrow$ "Open"\},
\{ \{gamma, 1\}, 0, 2, Appearance $\rightarrow$ "Open"\}
]

$$
\mathrm{t}
$$


contrast $\qquad$

$$
\text { bright } \xlongequal[0.94 \quad-|+\hat{\lambda}| \approx \rightarrow]{ }
$$

gamma
$1.164-$ - $+\approx \rightarrow$


井
Frame to cards
$\operatorname{In}[80]:=$ ComponentMeasurements [ \{frame, mask // MorphologicalComponents \}, "MaskedImage"]

Out[80]=


## Card to blobs

$\ln [68]:=$ ComponentMeasurements [ \{card, mask // MorphologicalComponents\}, "MaskedImage" ]

Out[68]=

$$
\{1 \rightarrow, 2 \rightarrow, 3 \rightarrow \varnothing
$$

## Outline

- Set
- Mathematica
- Parsing the image $\sqrt{ } 100 \mathrm{~ms}$
$\{\},\{\infty\},\{\infty\},\{\infty, \infty, \infty, \ldots\}$
- Color
- Shape
- Live demo omg


$$
\begin{aligned}
& \text { \{1, Green, "oval"\}, } \\
& \text { \{1, Red, "squiggly"\}, } \\
& \text { \{1, Green, "squiggly"\}, } \\
& \text { \{3, Red, "oval"\}, }
\end{aligned}
$$

## colors = ComponentMeasurements [

\{card, mask // MorphologicalComponents\},

## \{"MaskedImage", "Median"\} ]

median RGB color of blob

## Out[134]=

$$
\begin{aligned}
&\{1 \rightarrow\{,\{0.631373,0.203922,0.258824,1 .\}\}, \\
& 2 \rightarrow\{,\{0.635294,0.211765,0.262745,1 .\}\}, \\
& 3\rightarrow\{,\{0.643137,0.219608,0.278431,1 .\}\}\} \\
& \text { red green blue alpha }
\end{aligned}
$$



## Outline

- Set

- Mathematica
- Parsing the image
- Count
$\{\}\},\{\infty\},\{\infty\},\{\infty, \infty, \infty, \ldots\}$
$\dot{e}_{\text {Shape }}^{\text {Color }}$
- Live demo omg

\{
\{1, Green, "oval"\},
\{1, Red, "squiggly"\},
\{1, Green, "squiggly", \{3, Red, "oval" $\}$,


## Shape classification

labeled data set

$\ln [202]:=$
ComponentMeasurements

\{"MaskedImage", "Rectangularity", "ConvexCoverage"\}, "Dataset"]


|  | MaskedImage | Rectangularity | ConvexCoverage |
| :---: | :---: | :---: | :---: |
| 1 | , | 0.496789 | 0.858025 |
| 2 | 4 | 0.539489 | 0.884615 |
| 3 | 4 | 0.522359 | 0.880503 |
|  | MaskedImage | Rectangularity | ConvexCoverage |
| 1 |  | 0.602219 | 0.838983 |
| 2 |  | 0.611343 | 0.844538 |
| 3 |  | 0.606565 | 0.860169 |
|  | MaskedImage | Rectangularity | ConvexCoverage |
| 1 |  | 0.702335 | 0.968872 |
| 2 |  | 0.714635 | 0.954198 |
| 3 |  | 0.702327 | 0.977099 |





Q1: What if they weren't linearly separable?

Q2: Are these features "robust"?

If not linearly separable, can add more dimensions ("lifting")


## These 3 features are robust wrt rotation \& scaling

cyan diamond, yellow oval, magenta squiggly
BoundingDiskCoverage


## Shape classification




## Definition:

## Affine function

$$
f(x, y)=a+b x+c y
$$


linear...
... plus a constant

$$
f(x, y)=\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{l}
1 \\
x \\
y
\end{array}\right]
$$

## Big Idea: affine function for each shape: its "probability"

$$
a+b x+c y
$$

## Pick the shape with the greatest "probability"

## Example: If measure

rectangularity $=0.8$ convex coverage=0.8 green plane (squiggly) be blue and yellow at ( $0.8,0$.

## Too hard to tune 9 variables.



## Probability to the rescue

SIID CO ONE


## Assumption:

Given the feature vector $(x, y)$, the 3 shapes' probabilities are
rectangularity convex coverage


## Assumption:

Given the feature vector $(x, y)$, the 3 shapes' probabilities are rectangularity convex coverage


## Example

For affine functions given by $\mathbf{a = 1 , b = 2 , \ldots , \mathbf { i } = 9}$
the probability that the point $(0.8,0.8)$ is "oval" is

```
\(\ln [570]:=\operatorname{With}[\{a=1, b=2, c=3, d=4, e=5, f=6, g=7, h=8, i=9, x=.8, y=.8\}\),
```

    softmax \([\{a+b x+c y, d+e x+f y, g+h x+i y\}]\)
    $\left.\begin{array}{c}\text { J diamond } \\ \text { Out[570 }]=\end{array} \begin{array}{c}\text { Oval } \\ \left\{1.67814 \times 10^{-7},\right.\end{array} \quad 0.000409567,0.99959\right\}$

## Assumption:

Given the feature vector $(x, y)$, the 3 shapes' probabilities are rectangularity convex coverage


Then the probability of observing the (labeled) data set

$$
\begin{aligned}
& \left\{\left(x_{1}, y_{1}, l a b_{1}\right), \ldots,\left(x_{m}, y_{m}, l a b_{m}\right)\right\} \\
& \prod_{k=1}^{m} \operatorname{softmax}\left(\left[\begin{array}{c}
a+b x_{k}+c y_{k} \\
d+e x_{k}+f y_{k} \\
g+h x_{k}+i y_{k}
\end{array}\right]\right)_{l a b_{k}} \quad \begin{array}{c}
\text { eg: if lab } k=\text { oval, } \\
\text { then get } 2 \text { nd elem }
\end{array}
\end{aligned}
$$

is

## Assumption:

Given the feature vector $(x, y)$, the 3 shapes' probabilities are rectangularity convex coverage


Then the probability of observing the (labeled) data set

$$
\left\{\left(x_{1}, y_{1}, l a b_{1}\right), \ldots,\left(x_{m}, y_{m}, l a b_{m}\right)\right\}
$$

is $\quad L(a, b, \ldots, h, i):=\prod_{k=1}^{m} \operatorname{softmax}\left(\left[\begin{array}{c}a+b x_{k}+c y_{k} \\ d+e x_{k}+f y_{k} \\ g+h x_{k}+i y_{k}\end{array}\right]\right)_{l a b_{k}} \begin{array}{r}\text { eg: if labk }=\text { oval, } \\ \text { then get function" } \\ \text { that elem }\end{array}$

## Then the probability of observing the (labeled) data set

 $\left\{\left(x_{1}, y_{1}, l a b_{1}\right), \ldots,\left(x_{m}, y_{m}, l a b_{m}\right)\right\}$these are specifc numbers \& labels
is $\quad L(a, b, \ldots, h, i):=\prod_{k=1}^{m} \operatorname{softmax}\left(\left[\begin{array}{c}a+b x_{k}+c y_{k} \\ d+e x_{k}+f y_{k} \\ g+h x_{k}+i y_{k}\end{array}\right]\right)_{l a b_{k}} \begin{gathered}\text { ege if inhood lanction" }=\text { oval, } \\ \text { then get 2nd elem }\end{gathered}$

## Optimization problem:

these are specifc numbers \& labels
Given labeled data set $\left\{\left(x_{1}, y_{1}, l a b_{1}\right), \ldots,\left(x_{m}, y_{m}, l a b_{m}\right)\right\}$,
find values for $a, b, \ldots, h, i \in \mathbb{R}$ ${ }^{\log }$
that maximizes ${ }^{\wedge} L(a, b, \ldots, h, i)$
"maximum-likelihood estimation"

## Optimization problem:

Given labeled data set $\quad\left\{\left(x_{1}, y_{1}, l a b_{1}\right), \ldots,\left(x_{m}, y_{m}, l a b_{m}\right)\right\}$

$$
\begin{aligned}
& \text { find values for } \quad a, b, \ldots, h, i \in \mathbb{R} \\
& \text { that maximizes }{ }^{\text {log }} L(a, b, \ldots, h, i)
\end{aligned}
$$

## $\ln [627]:=$ data

Out [627]= $\{\{0.727927,0.951128,2\},\{0.650553,0.868085,3\}$,
$\{0.707464,0.930736,2\},\{0.683217,0.938596,2\}, \ldots$


In[629]:= FindMaximum[loglikelihood, \{a, b, c, d, e, f, g, h, i\}]
$\ln [627]:=$ data
Out[627]= \{\{0.727927, $0.951128,2\},\{0.650553,0.868085,3\}$, $\{0.707464,0.930736,2\},\{0.683217,0.938596,2\}$,
$\ln [628]:=\log l i k e l i h o o d=\sum_{x}^{\text {data }} \log \left[\operatorname{softmax}\left[\left(\begin{array}{ll}a+b x \llbracket 1 \rrbracket+c & x \llbracket 2 \rrbracket \\ d+e x \llbracket 1 \rrbracket+f & x \llbracket 2 \rrbracket \\ g+h x \llbracket 1 \rrbracket+i & x \llbracket 2 \rrbracket\end{array}\right)\right] \llbracket x \llbracket 3 \rrbracket \mathbb{\rrbracket}\right] ;$

In[629]:= FindMaximum[loglikelihood, \{a, b, c, d, e, f, g, h, i\}]

$$
\{a \rightarrow 4082.56, b \rightarrow-15232.7, c \rightarrow 5815.42, d \rightarrow-10019.5, \mathrm{e} \rightarrow 12089.9, f \rightarrow 252
$$

$$
\{a \rightarrow 4082.56, b \rightarrow-15232.7, c \rightarrow 5815.42, d \rightarrow-10019.5, e \rightarrow 12089.9, f \rightarrow 252
$$



## Outline

- Set
- Mathematica
- Parsing the image
- Count

$\{\},\{\infty\},\{\infty\},\{\infty, \infty, \infty, \ldots\}$
- Color
- Shape

Live demo omg


$$
\begin{aligned}
& \text { \{ } \\
& \{1, \text { Green, "oval" }\}, \\
& \text { \{1, Red, "squiggly" }\} \\
& \text { \{1, Green, "squiggly" }\} \\
& \{3, \text { Red, "oval" }\}
\end{aligned}
$$

playing...
背 Wed 10 Jan 2018 12:54:54 GMT-8. no sets found


## END

## Multinomial logistic regression

labeled data set \# samples
Given $\left(x_{i}, y_{i}\right), \quad i=1, \ldots, m$
find $\theta_{j} \in \mathbb{R}^{n}, \quad j=1, \ldots, k$ objective variables
to minimize

$$
l(\Theta):=\log \prod_{i=1}^{m} p\left(y_{i} \mid x_{i} ; \Theta\right)
$$

$\operatorname{softmax}(z):=\frac{e^{z}}{\sum e^{z}}$
Example:

$$
\underset{\mathrm{Y}_{\mathrm{i}}}{p(\text { oval }} \left\lvert\,\left[\begin{array}{l}
.7 \\
.6
\end{array}\right] \stackrel{\mathrm{X}_{i}}{; \Theta)}\right.:=\operatorname{softmax}\left(\Theta *\left[\begin{array}{l}
.7 \\
.6
\end{array}\right]\right)_{2}
$$

